

Structural

Engine

Case

Blade

**Landing Gear** 

**Appendix** 

# **INTRO**

Two kinds of story will be spoken at this section, It include the future and optimal solutions in aerospace industry



# **FUTURE**

The growth beyond our expecting will be come truth. If you ignore the signal of the future, you can't grab your opportunities. It's time to know and learn the future exactly.



# **SOLUTION**

What do you do for the future? What can you do for the future? There are answers of these questions. There are optimal solutions for the future.

# **Future Opportunity of Aerospace Industry**

Intro

Structural

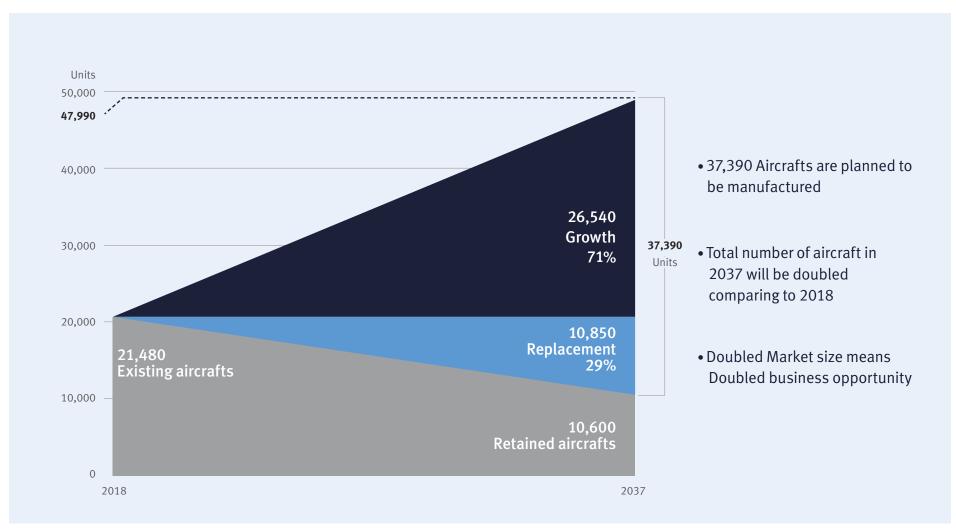
Body

Tail

Componer

Engine

Case


Blade

Landing Gear

Beam

Appendix

Older and less efficient airplanes will be replaced with more efficient, newer generation airplanes. During the shift in the generation, companies can grasp more opportunity to grow further.



# **Need for various solution in aerospace Industry**



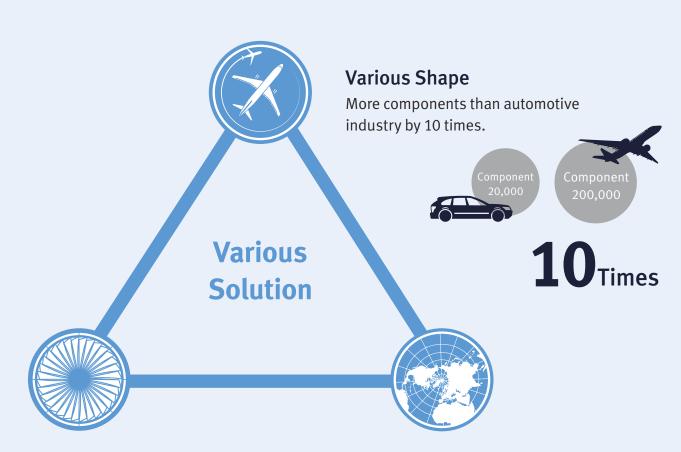
Structural

Doug

Iail

.

Engine


Case

Blade

**Landing Gear** 

Ream

Appendix



# **Various Material**

Difficult-to-cut Material (Titanium, Aluminum, Inconel, CFRP) become main material more and more

Difficult-to-cut Material

70%

30%

General Material

**70**%

# **Various Reference**

One defective product can cause a huge calamity Qualified machine and diverse experience is required



# **Doosan Machine Tools Capability in Aerospace Industry**

Intro

Structural

Body

lail

Componen

Engine

Case

Blade

**Landing Gear** 

Disk

**Appendix** 

# **For Various Shape**

Doosan Machine Tools has to meet demands in aerospace industry.



450 Models



**Various Solution** 



# For Various Material

Doosan Machine Tools has exceptional solution for difficult-to-material from diverse experience and R&D capability

450 R&D researchers



# **For Various Reference**

Most leading company and their partners choose Doosan Machine Tools



**500+** aerospace customers in the world

Intro

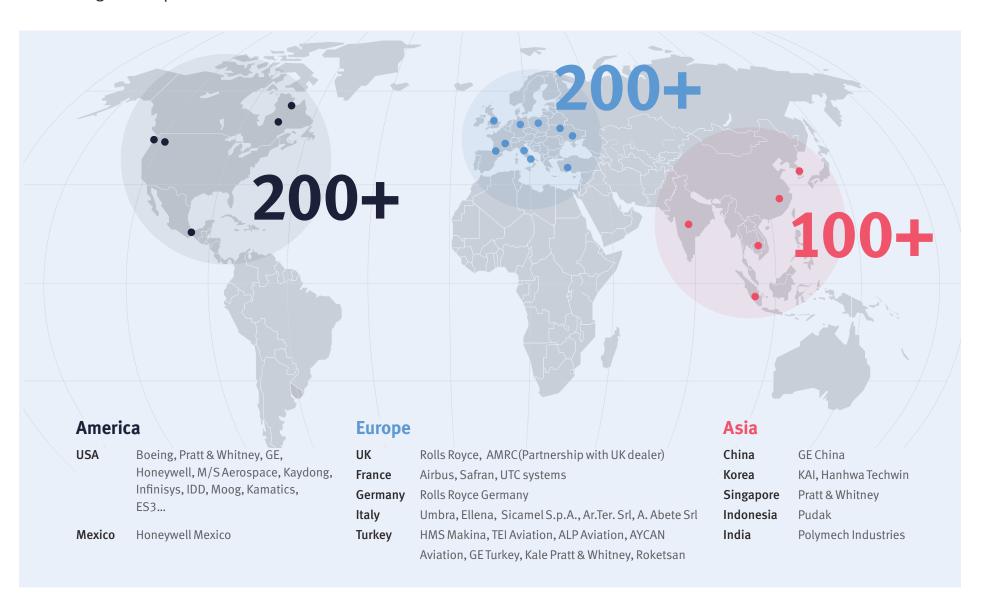
Structural

Bodv

Tail

Componer

Engine


Case Blade

**Landing Gear** 

Beam

Appendix

# Doosan's global top-tier customers



# **Partnership to improve Aerospace solution**

#### Intro

Structural

Body

lail

Component

Engine

Case

Blade

**Landing Gear** 

Beam

Appendix

# **MILLS CNC**

# Advanced Manufacturing Research Centre

# Doosan's UK dealer MILLS CNC join AMRC

"These are exciting times for Mills CNC. We're delighted to have become part of the AMRC and to be involved, right from the outset, in such a high-profile and important manufacturing project"

Managing director Kevin Gilbert

# **AMRC**(Advanced Manufacturing Research Centre)

# "A world-class centre for advanced manufacturing research"

- Specialises in carrying out world-leading research into advanced machining, manufacturing and materials, which is of practical use to industry

- Partner for global giants like Boeing, Rolls-Royce, BAE Systems and Airbus
- 500 highly qualified researchers and engineers from around the globe

# Sheffield Sheffield Birmingham

#### Two Doosan machines on AMRC



PUMATT 1800SY



MILLS CNC magazine article



DNM 6700



Machine on the AMRC site

# **Specification of Aerospace Parts**



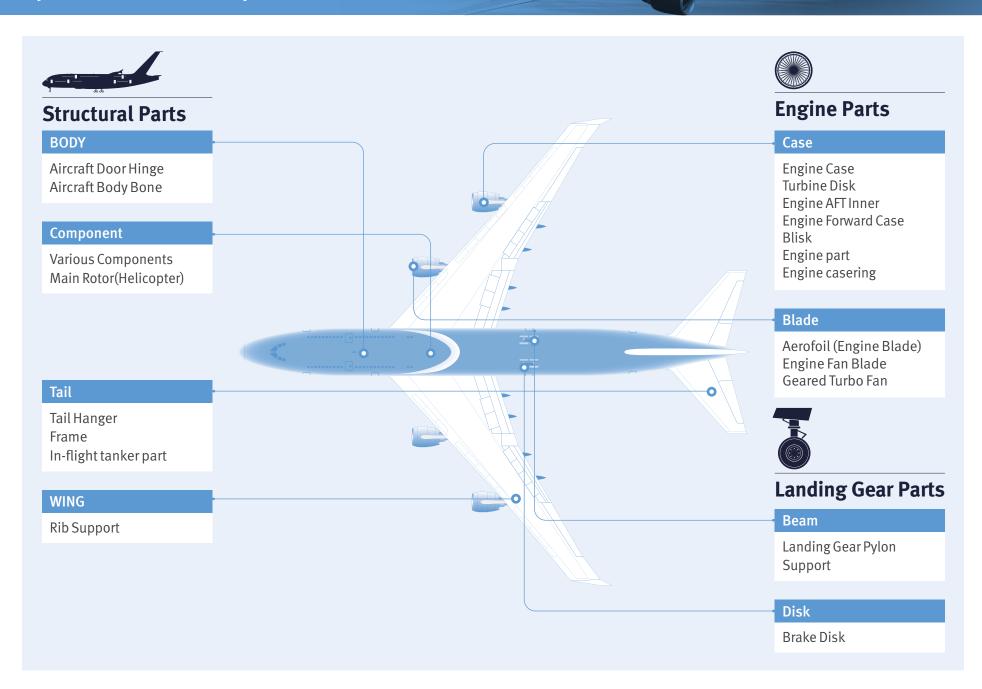
Structural

Body

Tail Wing

Componen

Engine


Case

Blade

**Landing Gear** 

Beam Disk

Appendix





Intro



Structural

Body

Tail

Wing

Componer

Engine

Case

Blade

**Landing Gear** 

Beam

Disk

Appendix

Aircraft Door Hinge



Size

Ø1390 mm (ø54.7 inch)

Material

**Titanium** 

# **Customer Request**

More Economical Solution than a Company

**Guarantee Accuracy** 

Curved Workpiece

# **Solution**

#### **DHF 8000**

Simultaneous 5-axis Horizontal Machining Center



High Torque 960 N·m (708.5 ft-lbs)

High Accuracy High Productivity

Simultaneous 5-axis

# **Machining Process**



| Process            | Tooling                                       | <b>Cutting Condition</b>          |
|--------------------|-----------------------------------------------|-----------------------------------|
| Roughing           | Ø42 mm (Ø1.7 inch)<br>Insert Mill             | 700mm/min (27.6 ipm),<br>400r/min |
| Semi-<br>finishing | Ø20 x R3.0 mm (Ø0.8 x<br>R0.1 inch) End mill  | 600mm/min (23.6 ipm),<br>1200/min |
| Finishing          | Ø20 mm (Ø0.8 inch)<br>End mill (45° 6 blades) | 150mm/min (5.9 ipm),<br>250/min   |

# **Productivity Improvement**

Cycle time Reduce 20%

A company 22 hours

DHF 8000 16 hours -30%

When I used a Japanese 5-axis machine to make this part, cutting tools were totally broken because of low rigidity. Now I use DHF 8000. This machine has enough power to cut titanium parts and high precision to meet strict condition of OEM. There are no precision issue on this machine by now.

- Plant Manager of Y company

Intro

#### Structural

#### Body

Tail

Wing

Component

Engine

Case

Blade

**Landing Gear** 

Poam

Appendix

# **Workpiece**

# **Aircraft Body Bone**



Size

2850 x 850 mm (112.2 x 33.5 inch)

Material

# **Aluminum**

# **Customer Request**

Large size Workpiece

Curved Shape

Universal Spindle



#### **BM 2740U**

Simultaneous 5-axis Universal Head Attached Bridge type Machining Center



Large size Table 4000 x 2500 mm (157.5 x 98.4 inch)

30000 r/min

Simultaneous 5-axis

# **Various Spindle Line-up**

Speed

12000~ 30000 r/min

Power

**30 ~ 75** kW (40.2 ~ 100.6 Hp)

Torque

**143 ~ 48** N·m (105.5 ~ 35.4 ft-lbs)



# **Better Chip Disposal**



High Pressure TSC 7MPa (70 bar)

# Structural

Julucture

Body Tail

Wing

Componer

Engine

Case

Blade

**Landing Gear** 

Beam

Disk

Appendix

# **Workpiece**

# **Tail Hanger**



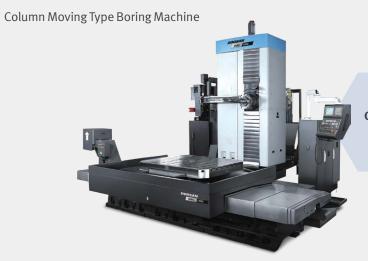
Size

**1000 x 1000** mm (39.4 x 39.4 inch)

Material

# **Aluminum**

# **Customer Request**


**Guarantee Productivity** 

High Torque Boring

Compact Working Area

# **Solution**

#### **DBC 110S**



Boring 3000 r/min

Compact Size

> High Torque 1273 N·m (939.5 ft-lbs)

# **Various Spindle Line-up**

#### Torque

**1137 / 1273 N·m** (839.1 / 939.5 ft-lbs)

**Power** 

**26** kW (34.9 Hp)

Speed

3000 r/min

# **Working Area**

Travel (X / Y / Z / W)

 $2000\,/\,1500\,/\,1200\,/\,500\,{}^{\text{mm}}$ 

(78.7/59.1/47.2/19.7 inch)

**Table Size** 

1400 x 1600 mm

(55.1 x 63.0 inch)

Intro



#### Structural

Body

Tail Wing

Component

Engine

Case

Blade

**Landing Gear** 

Beam

Disk

Appendix

Size

Frame

**1550** mm (61.0 inch)

Material

**Titanium** 

# **Customer Request**

Gurantee Productivity

Heavy Duty Machine

480pcs/Year

# **Solution**

#### VM 960

Vertical Machining center



Box Guideway

**High Rigidity** 

High Torque 826N·m (609.6 ft-lbs)

# **Additional 4th axis**



# **High Torque Spindle**

Speed

6000 r/min

Power

**26** kW (34.9 Hp)

Torque

825.9 N·m (609.5 ft-lb)



Intro

# Structural

Body

Tail

Wing

Engine

Case

Blade

**Landing Gear** 

Beam

Disk

Appendix

# **Workpiece**

# In-flight tanker part





Size 430 x 180 mm (16.9 X 7.1 inch)

Material

**CRES** 

# **Customer Request**

High Productivity

Complex Shaped Workpiece

Precision part

# **Solution**

# **VC 630/5AX**

Simultaneous 5-axis Vertical Machining center



High Rigidity Design

**Simultaneous** 5-axis

> High **Accuracy**

# **High Speed Built-in Spindle**

Max. spindle speed

12000 r/min

(20000r/min option )

# **Good for High Speed Solution**

- Low centrifugal force
- Minimum heat generation



# **Response to Various size Workpieces**

Max. size

ø730 x 500mm

(Ø28.7 x 19.7 inch)

Max. Weight

500 kg

(1102.3 lb)

# From Big to Small

• Machining a variety of workpieces by single machine

500kg (1102.3 lb) ø630 (Ø24.8)

Intro

#### Structural

Body

Tail

Wing

Engine

Case

Blade

**Landing Gear** 

Beam Disk

Appendix



# **Rib Support**



Size

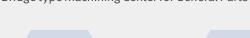
1000 x 1700 x 60 mm

(39.4 x 66.9 x 2.4 inch)

Material

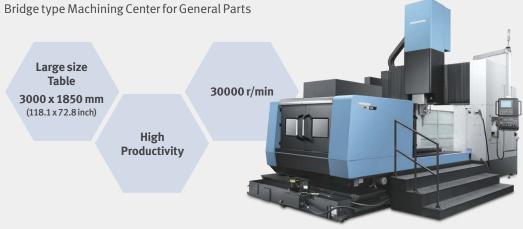
# **Aluminum**

# **Customer Request**


High Productivity

Large Working Area

High Speed Machining




#### **BM 2035**



Large size Table 3000 x 1850 mm (118.1 x 72.8 inch)

> High Productivity



# **For High-speed Machining**

Max. Spindle Speed

30000 r/min

# **Machining Process**

27500 r/min 11050 mm/min (435.0 ipm)



# **For Large Workpiece**

Table Size

**3500 x 1850** mm (137.8 x 72.8 inch)

Max. Weight on Table





#### Structural

Body

Tail Wing

Component

Engine

Case Blade

**Landing Gear** 

Beam Disk

Appendix

# **Various Components**



Size

**Various** 

Material

Steel, Aluminum, Titanium

# **Customer Request**

High Productivity

Complex Shaped Workpiece

**Precision Parts** 

# **Solution**

# **VC 630/5AX**

Simultaneous 5-axis Vertical Machining Center



High Rigidity Design

20000 r/min

**Simultaneous** 5-axis

# **High Speed Built-in Spindle**

Max. Spindle Speed

12000 r/min

(20000r/min option )

# **Good for High Speed Solution**

- Low centrifugal force
- Minimum heat generation



# **Response to Various size Workpieces**

Max. Size

ø730 x 500mm

(Ø28.7 x 19.7 inch)

Max. Weight

500 kg

(1102.3 lb)

# From Big to Small

• Machining a variety of workpieces by single machine

500kg (1102.3 lb) ø630 (Ø24.8)

Intro

#### Structural

Body

Tail

Wing

Component

Engine

Case

Blade

**Landing Gear** 

Disk

Appendix

# **Workpiece**

# **Various Components**



Size

# **Various**

Material

Steel, Aluminum, Titanium

**Guarantee Productivity** 

High Accuracy

# **Solution**

#### **DNM S series**

Productivity Vertical Machining Center



**Roller LM** Guideway

Thermal Compensation

15000 r/min

Feedrate 42 / 42 / 36 m/min (1653.5 / 1653.5 /

1417.3 ipm)

# **More Capacity**

#### Table Size (A x B)

**DNM 4500S** 

DNM 4500S

600 kg (1322.8 lb)

DNM 5700S

 $1000\,\mathrm{kg}$ 

(2204.6 lb)

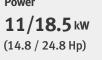
1000 x 450 mm (39.4 x 17.7 inch)

Max Weight on Table

**DNM 5700S** 

1300 x 570 mm (51.2 x22.4 inch)

# **High Speed Spindle for Productivity** of DNM 4500S / 5700S


Speed

15000 r/min

Feedrate (X / Y / Z)

42 / 42 / 36 m/min (1653.5 / 1653.5 / 1417.3 ipm)

#### **Power**



# **Customer Request**

High Rigidity

Intro

# Workpiece

#### Structural

Body

Tail

Wing

Component

Engine

Case

Blade

**Landing Gear** 

Beam

Disk

Appendix

Main Rotor(Helicopter)



Size

**Ø200 x 1500** mm (7.9 x 59.1 inch)

Material

**Carbon Steel** 

# **Customer Request**

Multi tasking

High Rigidity

High Accuracy



#### **PUMA SMX series**

Super Multi-Tasking Turning Center



Max. Milling Spindle Speed 12000 r/min

Simultaneous 5-axis

Left & Right Spindles

Max.
Spindle Torque
30kW & 1203 N·m
(40.2 Hp &
887.8 ft-lbs)

# **Machining Process**



Ø63 mm (2.5 inch) Face Mill

Ø25 mm (1.5 inch) End Mill 1200 r/min, 800 mm/min (31.5 ipm)

2200 r/min, 4000 mm/min (157.5 ipm)

# **Solution for Productivity: Lower Turret**



No. of Tool Stations12 stRotary Tool Speed5000 r/minOD Tool Size25 x 25 mm (1.0 x 1.0 inch)Max. Boring Bar SizeØ40 mm (1.6 inch)

#### Structural

Body

Tail

Wing

Component

Engine

Case Blade

**Landing Gear** 

Beam Disk

Appendix

# **Workpiece**

Rib



Size

# **Various**

Material

# **Aluminum**

# **Customer Request**

Special Spec.

30000r/min High speed spindle



# **VC 630/5AX**

Simultaneous 5-axis Vertical Machining center



630mm (24.8 inch) Rotary Table

30000 r/min

**Chip Disposal Solution** 

500kg (1102.3 lb) ø630 (Ø24.8)

# **High Speed Built-in Spindle**

Max. spindle speed

30000 r/min option



ø730 x 500 mm

(Ø28.7 x 19.7 inch)

Max. Weight

Max. size

 $500\,\mathrm{kg}$ 

(1102.3 lb)

#### From Big to Small

• Machining a variety of workpieces by single machine

**Response to Various size Workpieces** 

#### Good for High Speed Solution

- Low centrifugal force
- Minimum heat generation

#### Structural

Body

Tail

Wing

Component

Engine

Case

Blade

**Landing Gear** 

Beam Disk

Appendix

# **Workpiece**

# **Various Aerospace item**



Size

# **Various**

Material

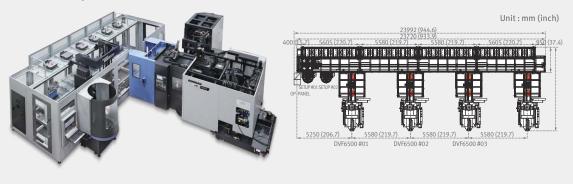
# **Various**

# **Customer Request**

LPS 5000

Manless Automation

Machining various workpieces




#### **DVF 6500**

High Precision Vertical 5-axis Machining Center



# LPS 5000 System



Intro

#### Structural

Body

Tail

Wing Component

Engine

Case

Blade

**Landing Gear** 

Beam Disk

Appendix

# **Workpiece**

Wing, Rib



Size

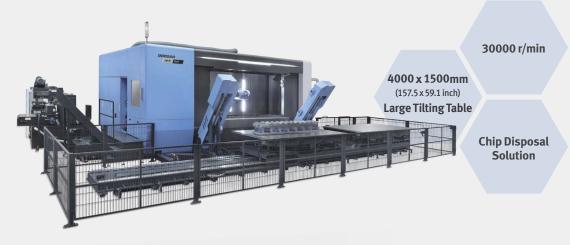
4000 x 1500 mm

Material

# **Aluminum**

# **Customer Request**

High-speed Spindle


High volume chip disposal

Productivity



#### HFP 1540

5 Axis Horizontal Simultaneous Machining Center for aircraft profiler



360°

# **Spindle**

Max. spindle speed

30000 r/min

Max. spindle motor power

75 kW (100.6 Hp)

Tool shank

**HSK A63** 

A-axis Tiling angle

+105~ -105

# **High-speed Scraper type Chip Conveyor**

Chip conveyor width Max. Removal Capa.

700mm (27.6 inch)

7000 cm<sup>3</sup>/min (427.2 inch)





#### Structural

Body

Tail Wing

Component

Engine

Case Blade

**Landing Gear** 

Beam Disk

Appendix

# **Workpiece**

# Clip edge frame



Size

# **Various**

Material

# Inconel

# **Customer Request**

Hard-to-cut Material Cutting Package

Powerful Cutting

Thermal compensation

# **Solution**

#### **MD 6700**

High Rigidity Vertical Machining Center



Option

**Powerful** Cutting

8000 r/min

# **Machining Process**

**Special** Modification Maximized machining performance on customer request

Option

BALL SCREW / Bearing / Servo Motor

Spindle Torque → Standard → Difficult cut

Coolant(Amount, pressure) 25% Improved

Cutting(depth)

**50**% Improved

**Axis thrust** 

20% Improved

Axis rigidity

23% Improved



#### Structural

Body

Tail

Wing

Component

Engine

Case Blade

**Landing Gear** 


Beam

Disk

Appendix



# **Large Aerospace part**



Size

# **Various Size**

Material

# **Various Material**

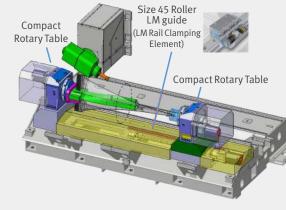
# **Customer Request**

High-speed Spindle

2-rotary table

Multi solution




#### VCF850LS2R

VCF Aerospace Solution





#### **Machine Structure**



Intro

**Workpiece** 

#### Structural

Body

Tail

Wing

Component

Engine

Case Blade

**Landing Gear** 

Beam Disk

Appendix

# Frame part



#### Material

# **Aluminum**

# **Customer Request**

High-speed Spindle

High volume chip disposal

Productivity



#### **HFP 1540**

5 Axis Horizontal Simultaneous Machining Center for aircraft profiler



# **Spindle**

Max. spindle speed

30000 r/min

Max. spindle motor power

75 kW (100.6 Hp)

Tool shank

**HSK A63** 

A-axis Tiling angle


+105~ -105

# **High-speed Scraper type Chip Conveyor** Chip conveyor width Max. Removal Capa. 700mm (27.6 inch)

360°



7000 cm<sup>3</sup>/min



Intro

Structural

Body

Tail

Wing

#### Engine

Case Blade

**Landing Gear** 

Beam Disk

Appendix

# **Workpiece**

# **Engine Case**



Size

**Ø1000** mm (ø39.4 inch)

Material

Inconel

#### **Customer Request**

**High Productivity** 

**High Rigidity** 

Strong RAM head



#### **PUMA VTR series**



High **Productivity** 

> **High Power / High Torque**

**Strong Ram** Head



#### **Unique Solution for Productivity of PUMA VTR series**

# **Quad Tool Indexing**

- 4direction rotating head
- DMT have the patent
- Reduce tool change time





# **Strong RAM head of PUMA VTR series**

**Clamping Force** 

Indexing 8 ton **90** deg.

(17636.7 lb)

Max. Tool Length from Ram

180 ~ 200 mm

(7.1 ~ 7.9 inch)



Inconel is one of the most difficult material to cut. But It's easy to cut Inconel if you have PUMA VTS Series. I will seriously consider further purchase more PUMA VTS Series.

- Engineer of E company

Intro

Structural

Tail

Wing

Compone

Engine

Case Blade

**Landing Gear** 

Beam

Disk

Appendix

# **Workpiece**

# **Engine Case**



Size

**Ø800** mm (Ø31.5 inch)

Material

Inconel

#### **Turbine Disk**



Size

**Ø800** mm (ø31.5 inch)

Material

**Titanium** 

#### **Customer Request**

High Accuracy

**High Productivity** 

Large Capacity



#### **PUMA V8300-2SP**

2 Spindle Vertical Turning Center



Large capa. Max turningdia 830 mm

(32.7 inch)

(32.7 inc

Max.

**High Torque** 

2592 N·m

(1912.9 ft-lbs)

High Productivity

Twin Spindle

# **PUMA V8300-2SP key Strengths in Turning Process**

- Strong machine rigidity supports stable fixation despite long working hours, and can handle items with a diameter as long as 830mm (32.7 inch)
- PUMA V8300-2SP have independent motor systems in each of its spindles, so productivity can be enhanced by operating two spindles at once.



#### **Productivity Improvement**

A Mmaximum ~50% in Cycle Time was Shortened

**50%** 

A Company

5 hours

PUMA V550 **2.5 hours** 

-50%

As much as 40% Cut in Turning Costs

**40% \** 

A Company \$20k

PUMA V550 \$12k -40%

Structural

Tail

Wing

Componen

Engine

Case Blade

**Landing Gear** 

Beam Disk

Appendix



# **Engine AFT Inner**



Size

**Ø700** mm (Ø27.6 inch)

Material

**Inconel** 

#### **Engine Case**



Size

**Ø700** mm (Ø27.6 inch)

Material

**Titanium** 

#### **Customer Request**

Large size Workpiece

ComplexShaped Workpiece

Difficult-to-cut Material Solution



#### **DHF 8000**

Simultaneous 5-axis Horizontal Machining Center



High Torque 960 N·m (708.5 ft-lbs) Large Workpiece 1400 x 1400 mm (55.1 x 55.1 inch)

Simultaneous 5-axis

#### **Machining Process**

#### **Upper Side Hole Drilling**

- Ø6.7 mm (0.3 inch) drill
- 50mm/min (2.0 ipm), 700 r/min

# **Slope Side Boss part Surfacing**

- Ø6.95 mm (0.3 inch) Row end mill
- 30mm/min (1.2 ipm), 200 r/min



# **High Power Spindle Option for Difficult-to-cut Material**

Torque

**960** N·m (708.5 ft-lbs)

**Power** 

35 kW (46.9 Hp)

**Speed** 

 $6000\,\text{r/min}$ 



- DHF8000 is optimized to cut inconel and titanium.
- General Manager of Equipment management team
- This machine have enough power to machining difficult-to-cut material with tilting function
  - General Manager of Production team

Intro

Structural

Body

Tail

Wing

Engine

Case Blade

**Landing Gear** 

Beam Disk

Appendix



# **Engine Forward Case**



Size Ø800 mm (ø31.5 inch)

Material Inconel

#### Blisk



Size Ø800 mm (ø31.5 inch)

Material

**Titanium** 

# **Customer Request**

Complex and Curved Workpiece

Shorten Cycle time

High Torque Spindle



#### **DHF 8000**

Simultaneous 5-axis Horizontal Machining Center



Large Workpiece 1400 x 1400 mm (55.1 x 55.1 inch)

Torque 960 N·m

High

(708.5 ft-lbs)

High Productivity

Simultaneous 5-axis

# **Machining Process** (Forward Case)



| Roughing             | 795 r/min, 450 mm/min (17.7 ipm) |  |
|----------------------|----------------------------------|--|
| Semi-finishing       | 1910 r/min, 500mm/min (19.7 ipm) |  |
| Semi-finishing Blade | 1425 r/min, 278mm/min (10.9 ipm) |  |
| Finishing            | 970 r/min, 70mm/min (2.8 ipm)    |  |

# **High Power Spindle for Difficult-to-cut** Material

Torque 960 N·m (708.5 ft-lbs)

Power 35 kW (46.9 Hp)

Speed 6000 r/min



**Tilting Angle**  $-100 \sim 60 \deg$ 

Intro

Structural

Body

Tail

Wing

Componer

#### Engine

Case Blade

**Landing Gear** 

Beam

Appendix

**Workpiece** 

# **Engine part**



Size

Ø500 mm (ø19.7 inch)

Material

Inconel

# **Customer Request**

Complex Shaped Workpiece

High Rigidity

Precision parts



# **VC 630/5AX**

Simultaneous 5-axis Vertical Machining Center



High Rigidity Design

20000 r/min

Simultaneous 5-axis

# **High Speed Built-in Spindle**

Max. spindle speed

12000 r/min

(20000r/min option )



# Good for High Speed Solution

- Low centrifugal force
- Minimum heat generation



# **Response to Various size Workpieces**

Max. size

ø730 x 500 mm

(Ø28.7 x 19.7 inch)

Max. Weight

**500**kg

(1102.3 lb)

# mm 500kg (1102.3 lb) 6630 (624.8)

#### From Big to Small

• Machining a variety of workpieces by single machine

Intro

Structural

Body

Tail

Wing

Componer

#### Engine

Case Blade

**Landing Gear** 

Room

Disk

Appendix



# **Engine casering**



Size

Ø800 mm (ø31.5 inch)

Material

**Inconel 718** 

# **Customer Request**

High productivity

High accuracy

Strongram head



#### PUMA VTR1012F/1216F



# **Option**

| Fixed column                |
|-----------------------------|
| Full cover                  |
| Linearscale                 |
| Work & Tool Measuring       |
| Calibration Unit            |
| High pressure coolant 70bar |
| Spin Window                 |
|                             |

# **Strong RAM head of PUMA VTR series**

Clamping Force Indexing 8 ton 90 deg.

(17636.7 lb)

Max. Tool Length from Ram

180 ~ 200 mm

(7.1 ~ 7.9 inch)



Inconel is one of the most difficult material to cut.
But It's easy to cut Inconel if you have PUMA VTS Series.
I will seriously consider further purchase more PUMA
VTS Series.

- Engineer of E compan

Intro

Structural

Body

Tail

Wing

Componer

Engine

Case Blade

**Landing Gear** 

Beam Disk

Appendix



Aerofoil (Engine Blade)



Size

**50** mm (2.0 inch)

Material

Inconel

# **Customer Request**

**Special Quotation** 

High Rigidity

**Guarantee Productivity** 



#### **VC 510**

High Productivity Twin Table Vertical Machining Center



Feedrate

40 / 40 / 32 m/min (1574.8 / 1574.8 / 1259.8 ft-lbs)

14000 r/min

Twin Spindle

High Pressure TSC 7MPa (70 bar)

# **Machining process**

**Special Modification** 

Machine ATC guard modified to take over size tool Ø200mm (Ø7.9 inch) required for some components.

Filtration

Drum filtration coolant system added to filter particles created by Grinding wheel.



Intro

Structural

Bodv

Tail

Wing

Componer

Engine

Case Blade

Landing Gear

Beam

Appendix

# **Workpiece**

# **Engine Fan Blade**



Size  $300 \times 700 \text{ mm} (11.8 \times 27.6 \text{ inch})$ 

Material

# **Aluminum**

# **Customer Request**

Guarantee Accuracy

High Rigidity

Curved Shape



# **VC 630/5AX**

Simultaneous 5-axis Vertical Machining Center



High Rigidity

High Accuracy

20000 r/min

Simultaneous 5-axis

# **High Speed Built-in Spindle**

Max. Spindle speed

12000 r/min

(20000r/min option )



- Low centrifugal force
- Minimum heat generation



# **Rotary Table type 5-axis Machine**

#### **Travels**

A axis  $+30 \sim -120^{\circ}$ 

Caxis 360°

# **Rapid traverse**

A axis 20 r/min

Caxis 30 r/min



Intro

Structural

Bodv

Tail Wing

Component

Engine

Case Blade

**Landing Gear** 

Beam

Disk

Appendix

# **Workpiece**



Size

**750 x 180** mm (29.5X 7.1 inch)

Material

# **Inconel**

# **Customer Request**

Special Spec.

Continuous Operation

Auto Compensation



#### **BM 1530M**

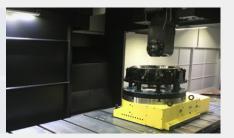
Bridge type machining center



800mm Rotary Table

**Angle Head** 

**High Productivity** 


# **Machining process**

Customized

Custom machining of up to 800mm workpieces for special workpiece

Option

Angle Head / Rotary table HSK-A63 / 100 tools



Structural

Body

Tail

Wing

Component

Engine

Case Blade

Landing Gear

Beam Disk

Appendix

# **Workpiece**

# **Split Engine Case**



Material

# **Titanium**

# **Customer Request**

Total solution

Additional C-axis option

Tolerance between hole 0.05mm (DOOSAN Measuring Macro P/G)



# **BM 1530 / DHF 8000 / PUMA VTR1216**



#### **Customer Site**







Structural

Body

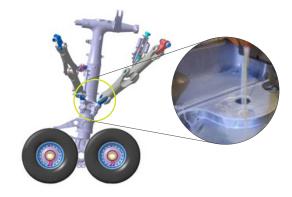
Tail

Wing

Engine

Case

Blade


**Landing Gear** 

Beam Disk

Appendix



## **Landing Gear Pylon**



Size

Ø380 mm (Ø15.0 inch)

Material

**Titanium** 

## **Customer Request**

High Accuracy

Heavy Duty Machine (High Torque)

High Productivity & Rigidity



### Mynx series

Heavy Duty Vertical Machining Center



Max. Torque 617 N·m (455.3 ft-lbs)

**Thermal** Compensation

> Servo Magazine

Box Guideway

## **Machining Process**

Initial Machining Condition

**Speed 34** r/min

**Feedrate** 

(2.4 ipm)

60 mm/min

450 N·m (332.1 ft-lbs)

**Required Torque** 

• Tool: Ø380mm(ø15.0 inch) slotting cutter

On the **Cutting Trial** 

- Raise RPM to 55 and decrease feed per tooth
- Enough Torque: Max. torque of Mynx is over 450N·m (332.1 ft-lbs)

Test Result

- Comparable cycle time with reducing spindle load
- Get the additional order for other type of machine



## **Customer L2**

Intro

Structural

Body

Tail

Wing Component

Engine

Case

Blade

Landing Gear

Beam

Disk

Appendix

## **Workpiece**

## Support



Size

**800 x 800** mm (31.5 x 31.5 inch)

Material

## **Titanium**

## **Customer Request**

**Guarantee Rigidity** 

High Productivity

**Heavy Duty Cutting** 



## NHP/NHM series



Torque

**Power** 

Speed

**10000** r/min

Heavy Duty Cutting (NHM)

High Productivity (NHP)

## **High Power, High Torque Spindle**





**600** N·m (442.8 ft-lbs)

**45 / 25** kW (60.3 / 33.5 Hp)

Torque

1732 N·m (1278.2 ft-lbs)

Power

**22 / 35** kW (29.5 / 46.9 Hp)

Speed

**6000** r/min

## **Customer L3**

Intro

Structural

Body

Tail

Wing

Component

Engine

Case Blade

Landing Gear

Beam Disk

Appendix

## **Workpiece**

## **Brake Disk**



(ø15.0 inch)

Size

Material

ø500 mm

**Carbon Steel** 

## **Customer Request**

Better Accuracy

Automation Application

Raise Productivity



### **PUMA V8300-2SP**

2 Spindle Vertical Turning Center



Automation Application

Better Rigidity

> Twin Spindle

## **Automation Solution**



**PUMA V8300-2SP**(Brand New Model of PUMA V550-2SP)

COSSAM Jon CET

**DNM 6700** (Brand New Model of DNM 650II)



**Robot Cell** 



Structural

Body

Tail Wing

Component

Engine

Case Blade

**Landing Gear** 

Beam

Appendix

Aircraft deliveries have risen steadily for the past 50 years, reaching the historical peak in 2015



Note: Includes regional aircraft SOURCE: Teal Group; OECD; EIU; IHS Global Insight; McKinsey

Structural

Body

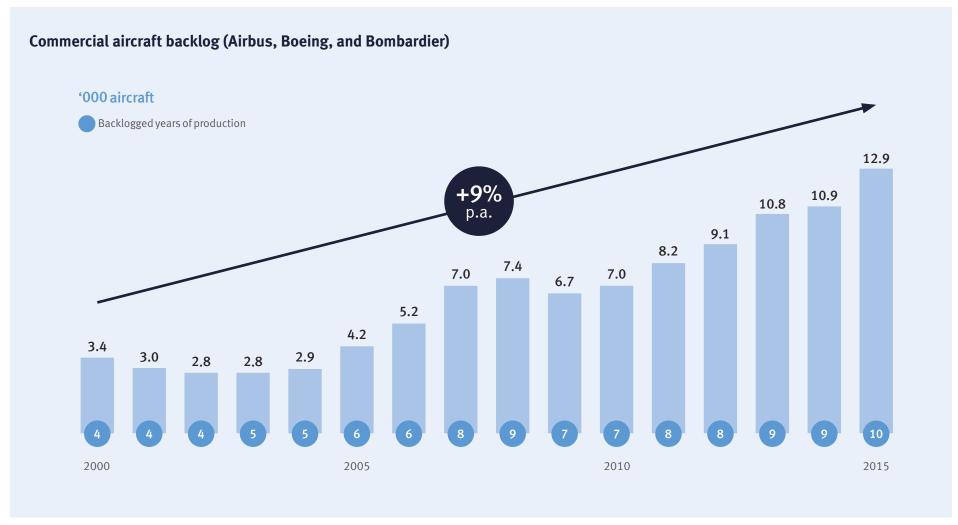
Tail

Wing

Component

Engine

Case


Blade

**Landing Gear** 

Roam

Appendix

Order books are completely full – with a backlogs of 10 years' production (12,900 aircraft)

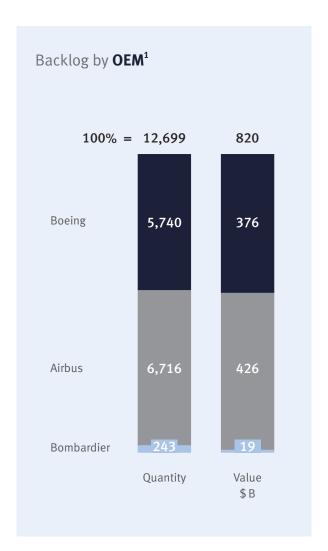


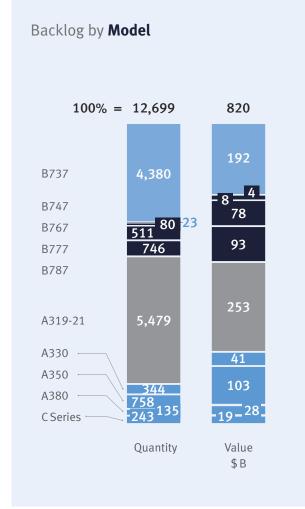
Structural

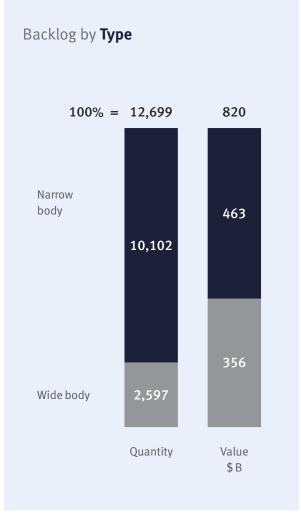
Body Tail

Wing

Engine


Case Blade


Landing Gear


Beam Disk

Appendix

Most of the backlog is for Boeing and Airbus aircraft; Bombardier is a distant third, although they scheduled an entry into the narrow-body market in 2016







1 Figures as of April 2016 2 Does not include Regional or Business Jet business SOURCE: Company website, TEAL Market overview

Aircraft demand forecasts

Intro

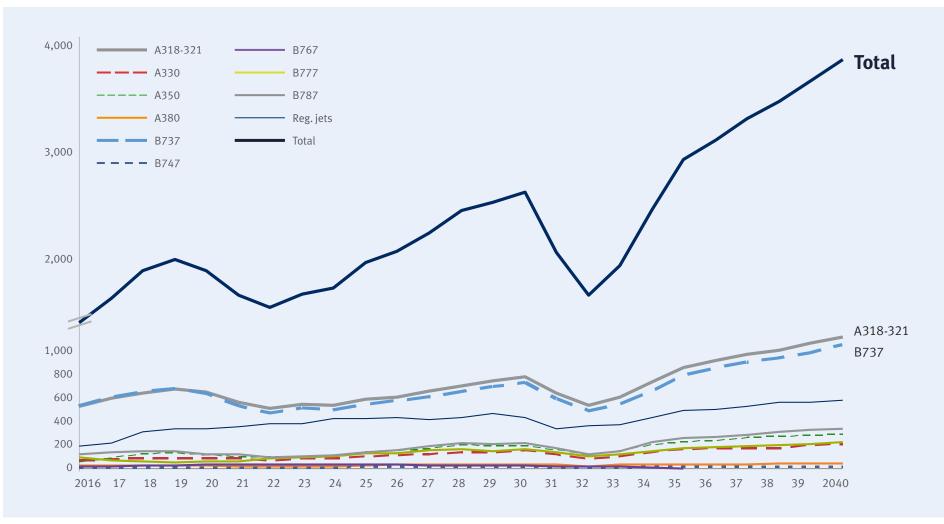
Structural

Body Tail

Wing

Component

Engine


Case Blade

**Landing Gear** 

Beam Disk

Appendix

## Projected aircraft deliveries, 2016 to 2040



#### Structural

Rody

Tail Wing

Componer

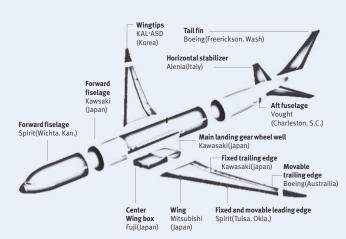
#### Engine

Case

Blade

#### **Landing Gear**

Beam


Disk

Appendix

## Aerospace Industry Structure



**Boeing Parts Sourcing** 



## Aerospace Industry Trend in Machining

### • Increasing Use of Hard-to-cut Material: Need for Solutions

- Aluminum alloy, Titanium: External parts of Aircraft
- Heat-Resistance material: Engine
- Machine tool concept, tooling, CAM, etc.







Aluminum

Inconel

Titanium

### Composite Material(ex: CFRP)

- Partially applied buy price issue
- Metal is still main material in the industry



### • Need for Better Chip Disposal

Parts not shown

Landing gear

Messier Dowty (England)

Wing/body fairing

Landing gear doors

Cargo access doors

Latecoere(France)

GE(Evendale. Ohio)

Rolls Royce(England)

Goodnch(Chula Vista. Calif)

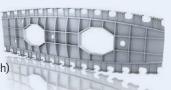
**Engines nacelles** 

Passenger entry doors

Boeing(Canada)

Boeing(Canada)

Saab(Sweden)


**Engines** 

**Engines** 

- 90% of raw material is removed as chip
- Horizontal structure for chip disposal
- +Universal head for 5-axis machining



- Machine classification for frame/ skin by size(table)
- Small size aircraft: 500~700mm (19.7~27.6 inch)
- Middle size aircraft : 800~1300mm (31.5~51.2 inch)
- Large size aircraft: 2000mm~ (79.7 inch~)



2014, Unit: Percent

Intro

Structural

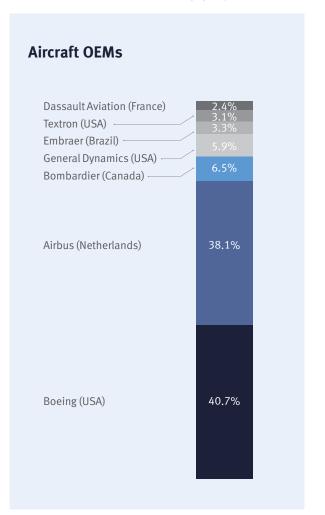
Body

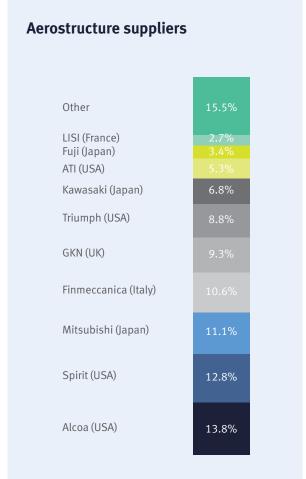
Tail Wing

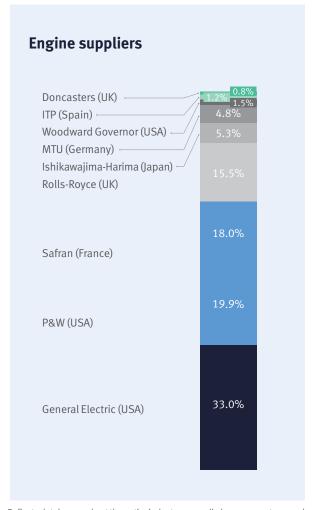
Componer

Engine

Case Blade


**Landing Gear** 


Beam Disk


Appendix

The industry is quite consolidated in the Engines segment, but this has not yet occurred in the Aero-structure one

Share of revenues within top players from 100 aerospace suppliers<sup>1</sup>







Note: Reflects database and not the entire industry as small players are not covered 1 If available, the data reflects the business division concerned, otherwise the whole company SOURCE: Company data, McKinsey analysis

Unit: Percent

Intro

Structural

Body

Tail Wing

Componen

Engine

Case Blade

**Landing Gear** 

Beam Disk

Appendix

The production ramp up in commercial aviation results in diverse margin trends with 2015 being tough for OEMs

Average operating margin



- ♠ Increased margin more than 1 percentage point since 2012
- Stable margin (-1 < X < 1) since 2012</p>
- Decreased margin more than 1 percentage point since 2012

NOTE: Reflects database and not the entire industry; figures corresponding to commercial aircraft specific division whenever possible SOURCE: McKinsey profit pool database

Structural

Body

Tail

Wing

Component

Engine

Case Blade


**Landing Gear**Beam

Appendix

Disk

The aero engine market is growing, driven primarily by medium-to-large turbofan engine developments

Value 2016, Unit: \$ Millions



# **Doosan Machine Tools in the World**

In an effort to provide solutions that fit each partners' unique needs, we constantly innovate our thinking, processes, and the way we do business. These optimal solutions lay the foundation for the success of our partners, which adds value to our partners' businesses.





#### **Supplying Parts**

- Supplying parts without charges
- Supplying parts with charges
- · Parts repair



#### Field Services

- On-site services
- · Installment and trials
- · Scheduled maintenance/ Preventive maintenance
- Repairs with/without charges



#### **Technical Support**

- · Supporting machining technology
- Responding to technical inquiries
- Providing technical materials



#### **Training**

- Programming / Machine operation
- Maintenance
- Application engineering

## **Doosan Machine Tools**

www.doosanmachinetools.com









There is a high risk or fire when using non-water-soluble cutting fluids, processing flammable materials, neglecting use coolants and modifying the machine without the consent of the manufacturer. Please check the SAFETY GUIDANCE carefully before using the machine.

#### **Head Office**

22FT Tower, 30, Sowol-ro 2-gil, Jung-gu, Seoul, Korea, 04637

Tel +82-2-6972-0370 / 0350

Fax +82-2-6972-0400

#### **Doosan Machine Tools America**

19A Chapin Rd., Pine Brook, NJ 07058, U.S.A.

Tel +1-973-618-2500 Fax +1-973-618-2501

# **Doosan Machine Tools Europe**

Emdener Strasse 24, D-41540 Dormagen, Germany

Tel +49-2133-5067-100 Fax +49-2133-5067-111

#### **Doosan Machine Tools India**

No.82, Jakkuar Village, Yelahanka Hobil, Bangalore-560064

#### **Doosan Machine Tools China**

Room 101,201,301, Building 39 Xinzhuan Highway No. 258 Songjiang District, China Shanghai(201612)

Tel +86-21-5445-1155

Fax +86-21-6405-1472

\* For more details, please contact Doosan Machine Tools.

- The specifications and information above-mentioned may be changed without prior notice.
- \* Doosan Machine Tools Co., Ltd. is a subsidiary of MBK Partners. The trademark **DOOSAN** is used under a licensing agreement with Doosan Corporation, the registered trademark holder.