|  |  | mm |
| :---: | :---: | :---: |
| Equivalent bore size | Standard strokes | Maximum available stroke |
| $\mathbf{1 6}$ | $25,50,75,100,125,150,175,200,250,300,350,400,450,500,600,700,800$ |  |
| 2000 |  |  |
|  | $50,100,150,200,250,300,350,400,450,500,550,600,650,700,750,800,850,900,1000$ |  |
| $\mathbf{3 2 , 4 0 , 5 0}$ | $100,200,300,400,500,600,700,800,900,1000,1100,1200$ |  |

Remark: Non-standard strokes are available at 1 mm pitch intervals. For strokes beyond the maximum available stroke, or for non-standard strokes, ask the nearest Koganei office. Consult us for delivery.

## Mass

| Model | Zero stroke mass | Additionalmass for each$25 \mathrm{~mm}[0.984 \mathrm{in}$.stroke | F-type <br> support | M-type mount | Shock absorber unit |  |  | Additional mass of 1 sensor switch ${ }^{\text {Note }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Table | One side | Both sides | ZE $\square \square \square \mathbf{A}$ | ZE $\square \square \square \mathbf{B}$ |
| ORV16 | 0.20 [0.44] | 0.03 [0.066] | 0.008 [0.018] | 0.019 [0.042] | 0.077 [0.17] | 0.062 [0.137] | 0.124 [0.273] | 0.015 [0.033] | 0.035 [0.077] |
| ORV20 | 0.34 [0.75] | 0.04 [0.088] | 0.016 [0.035] | 0.03 [0.066] | 0.14 [0.31] | 0.105 [0.232] | 0.21 [0.46] |  |  |
| ORV25 | 0.51 [1.12] | 0.05 [0.110] | 0.028 [0.062] | 0.038 [0.084] | 0.20 [0.44] | 0.18 [0.40] | 0.36 [0.79] |  |  |
| ORV32 | 1.15 [2.54] | 0.085 [0.187] | 0.036 [0.079] | 0.095 [0.209] | 0.47 [1.04] | 0.31 [0.68] | 0.62 [1.37] |  |  |
| ORV40 | 1.90 [4.19] | 0.125 [0.276] | 0.062 [0.137] | 0.13 [0.287] | 0.68 [1.50] | 0.46 [1.01] | 0.92 [2.03] |  |  |
| ORV50 | 3.48 [7.67] | 0.19 [0.419] | 0.062 [0.137] | 0.23 [0.507] | 1.07 [2.36] | 0.74 [1.63] | 1.48 [3.26] |  |  |

Note: Sensor switch types A and B show the lead wire lengths.
A: 1000 mm [39in.] B: 3000 mm [118in.]

## Air Flow Rate and Air Consumption

While the slit type rodless cylinders ORV series' air flow rate and air consumption can be found through the following calculations, the quick reference table below provides the answers more conveniently.

| $Q_{1}$ : Required air flow rate for cylinder | $\ell / m i n(A N R)$ |
| :---: | :---: |
| Q2: Air consumption of cylinder | $\ell / m i n(A N R)$ |
| D : Equivalent bore size | mm |
| L : Cylinder stroke | m |
| $t$ : Time required for cylinder to travel one strok | roke |
| n : Number of cylinder reciprocations per minut | nute times/min |
| P : Pressure | MPa |
| $\mathrm{Q}_{1}{ }^{\prime}$ : Required air flow rate for cylinder $\mathrm{ft}^{3} 3$ | $\mathrm{ft}{ }^{3} / \mathrm{min} .(\mathrm{ANR})^{\text {\% }}$ |
| $\mathrm{Q}^{\prime}$ : Air consumption of cylinder ft 3 | $\mathrm{ft} 3 / \mathrm{min}$. (ANR) ${ }^{\text {\% }}$ |
| $\mathrm{D}^{\prime}$ : Equivalent bore size | in. |
| L': Cylinder stroke | n. |
| $t$ : Time required for cylinder to travel one strok | roke sec. |
| n : Number of cylinder reciprocations per minut | nute times/min |
| $\mathrm{P}^{\prime}$ : Pressure | psi. |

※Refer to p. 54 for an explanation of ANR.
$\mathrm{cm}^{3}$ [in.3]/Reciprocation (ANR)

| $\begin{aligned} & \hline \text { Equivalent } \\ & \text { bore size } \end{aligned}$$\mathrm{mm} \text { [in.] }$ | Air pressure MPa [psi.] |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.2 [29] | 0.3 [44] | 0.4 [58] | 0.5 [73] | 0.6 [87] | 0.7 [102] | 0.8 [116] |
| 16 [0.630] | 1.198 [0.07311] | 1.596 [0.09739] | 1.993 [0.1216] | 2.391 [0.1459] | 2.789 [0.1702] | 3.187 [0.1945] | 3.585 [0.2188] |
| 20 [0.787] | 1.871 [0.1142] | 2.493 [0.1521] | 3.115 [0.1901] | 3.737 [0.2280] | 4.358 [0.2659] | 4.980 [0.3039] | 5.602 [0.3419] |
| 25 [0.984] | 2.924 [0.1784] | 3.896 [0.2377] | 4.867 [0.2970] | 5.838 [0.3563] | 6.810 [0.4156] | 7.781 [0.4748] | 8.753 [0.5341] |
| 32 [1.260] | 4.791 [0.2924] | 6.382 [0.3895] | 7.974 [0.4866] | 9.566 [0.5838] | 11.16 [0.6810] | 12.75 [0.7781] | 14.34 [0.8751] |
| 40 [1.575] | 7.486 [0.4568] | 9.973 [0.6086] | 12.46 [0.7604] | 14.95 [0.9123] | 17.43 [1.064] | 19.92 [1.216] | 22.41 [1.368] |
| 50 [1.969] | 11.70 [0.7140] | 15.58 [0.9508] | 19.47 [1.188] | 23.35 [1.425] | 27.24 [1.662] | 31.13 [1.900] | 35.01 [2.136] |

The figures in the table show the air flow rate and air consumption when a rodless cylinder makes 1 reciprocation with stroke of 1 mm [0.0394in.]. The air flow rate and air consumption actually required is found by the following calculations.
-Finding the air flow rate (for selecting F.R.L., valves, etc.)
Example: When operating a slit type rodless cylinder ORV series with an equivalent bore size of 40 mm [1.575in.] at a speed of $300 \mathrm{~mm} / \mathrm{s}$ [118in. $/ \mathrm{sec}$.] and under air pressure of 0.5 MPa [73psi.]
$14.95 \times \frac{1}{2} \times 300 \times 10^{-3}=2.24 \mathrm{l} / \mathrm{s}[0.0791 \mathrm{ft} 3 / \mathrm{sec}$.$] (ANR)$
(At this time, the flow rate per minute is $14.95 \times \frac{1}{2} \times 300 \times 60 \times 10^{-3}=134.55 \mathrm{l} / \mathrm{min}[4.75 \mathrm{ft} 3 / \mathrm{min}$.$] (ANR))$

- Finding the air consumption

Example 1. When operating a slit type rodless cylinder ORV series with an equivalent bore size of 40 mm [1.575in.] and a stroke of 100 mm [3.94in.], and under air pressure of 0.5 MPa [73psi.], for 1 reciprocation

$$
14.95 \times 100 \times 10^{-3}=1.495 \ell[0.0528 \mathrm{ft} .3] / \text { Reciprocation (ANR) }
$$

Example 2. When operating a slit type rodless cylinder ORV series with an equivalent bore size of 40 mm [1.575in.] and a stroke of 100 mm [3.94in.], and under air pressure of 0.5 MPa [73psi.], for 10 reciprocations per minute
$14.95 \times 100 \times 10 \times 10^{-3}=14.95 \mathrm{l} / \mathrm{min}[0.528 \mathrm{ft} .3 / \mathrm{min}$.$] (ANR)$
Note: To find the actual air consumption required when using the slit type rodless cylinders ORV series, add the air consumption of the piping to the air consumption obtained from the above calculation.

