hindroconta

WATER METERS

TRITÓN WATER METER

O ${ }^{\circ}$ hinroconts

Hydrodynamic design

Multi-jet technology ensures uniform distribution of load on the turbine located thanks to the water inlet diffuser. The movement activates the magnetic transmission that will give the final reading of the volume.

Hidroconta Triton watermeters are designed to avoid external manipulation by magnetic fields. They have a special shield that covers the dial and prevents any possible fraud.

Potable water MID Homologation

Thanks to the homologation acquired, the low maintenance needs and the reduced pressure losses this product is suitable for totalizing water for domestic
use.

(3))

Pre-equiped

The Hidrojet dial has a pre-installation that allows to place a pulse emitter, without having to stop the counter, this will give information of the reading.

00000000

Dial

HIDROCONTA

MID Approval for use domestic
water.

©

Technical specifications

Turbine and dial in thermoplastic material.

- Vacuum dial to prevent condensation of water.
- Magnetic transmission protected against external magnetic fields.
- Inductive pulse output pre-equipment for a remote reading. Quick connection without stopping or dismantling the water meter.

High mechanical and wear resistance .

- MID approval for potable water. MID 2014/32 / EU Directive.

Straight sections are not necessary at the Hidrojet input or output UO-DO.

(d)

Disassembly

№	Description	Material
$\mathbf{1}$	Lid	ABS
$\mathbf{2}$	Cover	ABS
$\mathbf{3}$	Dial	Assembly
$\mathbf{4}$	Antifraud-ring	Hierro
$\mathbf{5}$	Closing ring	Copper alloy
$\mathbf{6}$	Joint	Nylon
$\mathbf{7}$	O-ring	NR
$\mathbf{8}$	Separated plate	PPO
$\mathbf{9}$	Turbine	PP
$\mathbf{1 0}$	Chamber	PPO
$\mathbf{1 1}$	O-ring	NR
$\mathbf{1 2}$	Plug	Copper alloy
$\mathbf{1 3}$	Joint	POM
$\mathbf{1 4}$	Adjusting screw	POM
$\mathbf{1 5}$	Nut	Copper alloy
$\mathbf{1 6}$	Fitting tube	Copper alloy
$\mathbf{1 7}$	Joint	NR
$\mathbf{1 8}$	Filter	Pom
$\mathbf{1 9}$	Body	

©

Dimensions

Calibre		L1	L2	B	H	Weight with fittings	Weight without fittings	Threaded fittings
mm	Pulg.	mm				Kg		
15	1/2"	165	258	79	110	0,99	0,82	G 3/4" BSP
20	3/4"	195	287	79	112	1,29	1,02	G 1" BSP
25	$1^{\prime \prime}$	260	378	79	113	2,23	1,75	G 1-1/4" BSP

Packing

	UNITS									
CALIBRE	BOX DIMENSIONS (CM)			GROSS PER BOX	Length			Width	High	KG
DN 15	10	51,4	18,5	26,5	13,42					
DN 20	10	52,9	21,4	27,8	16,88					
DN 25	10	56,5	27	16,4	14,12					

Working conditions

Room temperature	Maximum pressure
$0.1^{\circ} \mathrm{C} \sim 40{ }^{\circ} \mathrm{C}$	$\leq 16 \mathrm{bar}$

Maximum permissible error

Range	Error (\%)
$Q_{1} \leq Q<Q_{2}$	$\pm 5 \%$
$Q_{2} \leq Q \leq Q_{4}$	$\pm 2 \%$

Technical specifications

Calibre			```Perm Permanent flow```	```Q2 Transition flow```	$\begin{gathered} Q_{1} \\ \begin{array}{c} \text { Minimum } \\ \text { flow } \end{array} \end{gathered}$	Starting flow rate	Mininimum Reading	Maximum Reading	Ratio
mm	Inch	$\mathrm{m}^{3} / \mathrm{h}$				1/h	1	m^{3}	
15	1/2"	3,125	2,5	0.025	0.0156	8	0,05	99.999	R160
20	3/4"	5	4	0.040	0.025	10	0,05	99.999	R160
25	1 "	7,875	6,3	0.063	0.0393	10	0,05	99.999	R160

Pressure loss curve

Flow error curve

Flow (m3/h)

(3))

Pulse emisor

DIRECT AND INDIRECT PULSES OUTPUT	
Pulse value	Standard 1 pulse $=10 \mathrm{I}$
Type of output	Potential-free contact
Maximum current for contact closure	100 mA
Maximum polarization voltage	60 V
Contact resistance closed	50 hms maximum
Contact duration closed	100 mS
Insulation voltage test	3750 Vrms

ロ::ロ

Diagrams for installing

Straight sections are not necessary at the Tritón input or output UO-DO.

Installation instructions

- Place the meter so that the arrow matches the direction of the water flow.
- The meters must always be full of water when operating, minimum presure 0,3 bar, and installed below the slope of the rest of the pipeline. This stops air pockets from forming inside.
- If there is air in the pipeline, suckers must be fitted to avoid incorrect readings. If the water in the pipeline contains large suspended particles, an initial screening filter should be installed.
- Fit a valve upstream from the meter to facilitate maintenance or repair.
- A new pipeline should be drained before fitting a meter to eliminate particles.
- Do not force the meter during assembly; avoid tension or torsional stress, especially to the threaded connections..
- The meter connection can be instaled on horizontal, oblique or vertical pipe.

(1) hiniroconta TRITÓN WATER METER

WHEN WATER COUNTS
CUANDO EL AGUA ES LO QUE CUENTA

www.hidroconta.com

Ctra. Sta Catalina, 60
Murcia (30012)
España
$\mathrm{T}:+34968267788$ $\mathrm{~F}:+34968341149$

