WATER METERS

() hidrowoftmann

The Hidrowoltmann water meter of Hidroconta has been designed to favor the correct thrust of the water on the turbine. It has a symmetrical control device that distributes the input load by balancing the flow.

0
 Independent mechanism

With a totally independent mechanism and protected against magnetic fields, the Hidrowoltmann, allows a simpler repair, without having to extract the meter of the installation, a greater durability and security against fraud.

0

High resistance

To extend the life of the meter, the Hidrowoltmann design performs hydrodynamic compensation avoiding external thrust on the turbine axe.

Water engineering

Its operation is based on a turbine whose axis is located in the line of water flow. The rotation of the turbine is transmitted by magnetic transmission through a axe and gear to a head that accumulates in its totalizer the volume of water that has circulated through the meter.

Type examination for irrigation water and public hydraulic domain use

(

Technical specifications

- Pre-equipment of pulse transmitter.
- Calibres from 50 to 300 mm.
- Vacuumed water tight dry dial.
- Metrology R50 horizontal position.
- Lost class of pressure $\Delta \mathrm{p} 10$ (0,1 bar)
- Easy to read register.
- Cold water use 0,1-30 .
- The Hidrowoltmann water meter can reach up tu

16 bar.

(1)

Disassembly

N^{2}	Description	Material
$\mathbf{1}$	Body	Cast Iron
$\mathbf{2}$	Stator	Plastic
$\mathbf{3}$	Reinforcement disck	Stainless steel
$\mathbf{4}$	Transmission shaft	Plastic
$\mathbf{5}$	Support plate	Brass
$\mathbf{6}$	Cover	Cast Iron
$\mathbf{7}$	Screw M12×35	Stainless steel
$\mathbf{8}$	Outer ring	Plastic
$\mathbf{9}$	Carter	Plastic
$\mathbf{1 0}$	Propeller	Assembled
$\mathbf{1 1}$	Adjusting lever	Plastic
$\mathbf{1 2}$	Guider lever	Plastic
$\mathbf{1 3}$	Adjusting screw	Plastic
$\mathbf{1 4}$	Adjusting nut	Brass
$\mathbf{1 5}$	O-ring M135×3	Rubber
$\mathbf{1 6}$	Dial	Assembled
$\mathbf{1 7}$	Screw M4×2	Stainless steel
$\mathbf{1 8}$	Allen screw M4×20	Stainless steel
$\mathbf{1 9}$	Dial cover	Metalic
$\mathbf{y y y}$		

Dimensions

Coupling - Flange PN16 (1)

Packing

DIAMETER	UNITS PER BOX	BOX DIMENSIONS (CM)			
	Largo	Ancho WEIGHT			
DN 50	1	34	22	24	13,36
DN 65	1	34	24	24	14,85
DN 80	1	35,5	25,1	26,7	17,36
DN 100	1	35,7	26	28,4	19,16
DN 125	1	36,2	28,5	27,4	24,89
DN 150	1	38,6	32,5	33,4	32,65
DN 200	1	42,7	38,4	37,9	45,40
DN 250	1	51,1	44,4	50,3	68,35
DN 300	1	57	50	58	102,5

Working conditions

Room temperature	Maximum pressure
$40^{\circ} \mathrm{C}$	$\leq 16 \mathrm{bar}$

Range	Error (\%)
$Q_{1} \leq Q<Q_{2}$	$\pm 5 \%$
$Q_{2} \leq Q \leq Q_{4}$	$\pm 2 \%$

Maximum permissible error

Technical specifications

Calibre		Q4	Q_{3}	Q_{2}	Q_{1}	Minimum Reading	Maximum Reading	Ratio
mm	Pulg.	$\mathrm{m}^{3} / \mathrm{h}$				m^{3}		
50	2"	31,25	25	0,80	0,50	0,0005	9.999.999	R50
65	2-1/2"	50	40	1,28	0,80	0,0005	9.999 .999	R50
80	3'	78,75	63	2,02	1,26	0,0005	9.999 .999	R50
100	4"	125	100	3,20	2	0,0005	9.999.999	R50
125	5"	200	160	5,12	3,20	0,005	9.999.999	R50
150	$6^{\prime \prime}$	312,5	250	8	5	0,005	9.999 .999	R50
200	8"	500	400	12,80	8	0,005	9.999.999	R50
250	10"	787,5	630	20,16	12,60	0,02	9.999.999	R50
300	12"	1250	1000	32	20	0,02	9.999.999	R50

Pressure loss curve

Flow error curve

Pulse emisor

Type	Reed sensor
Pulse value	DN 50-125: 1 pulse 100L DN 150-300: 1 pulse 1000L
Min. amperage to close contact	0 mA
Max. amperage to close contact	100 mA
Closed contact impedance	$<1 \Omega$
Open contact resistance	$\sim \infty$
Max. supportable voltage	24 V
Max. Stabilization time	100 us
Closed contact lapsed time	20% of cycle
Standar wire	$1,5 \mathrm{~m}$

Installation instructions

- It is recommended to place the watermeter at a low point in the installation
- Place the meter so that the arrow matches the direction
of the water flow.
- Do not force the meter during assembly; avoid tension or torsional stress, especially to the threaded connections.
- The meters must always be full of water when operating and installed below the slope of the rest of the pipeline. This stops air pockets from forming inside.
- If there is air in the pipeline, suckers must be fitted to avoid incorrect readings.
- If the water in the pipeline contains large suspended particles, an initial screening filter should be installed.
- Fit a valve upstream from the meter to facilitate maintenance or repair.
A new pipeline should be drained before fitting a meter to eliminate particles.
- The meter connection can be instaled on horizontal, oblique or vertical pipe.
- The inside diameter of the pipe must be equal to the nominal diameter of the watermeter.

INSTALLATION SENSITIVITY CLASS

In the Hidrowoltmann dial is marked the sensitivity to irregularity in the upstream and downstream that define the installation conditions.
\(\left.$$
\begin{array}{|c|l|}\hline \text { U1O } & \begin{array}{l}\text { The water meter needs straight } \\
\text { sections minimum 10 times the } \\
\text { water meter diameter upstream. }\end{array} \\
\hline \text { D5 } & \begin{array}{l}\text { If a flow stabilizer is set before } \\
\text { the water meter the installation } \\
\text { will not need straight sections } \\
\text { upstream. }\end{array}
$$

\hline The water meter needs straight

sections minimum 5 times the

water meter diameter

downstream.\end{array}\right]\)| The water meter will not need |
| :--- |
| straight sections downstream |
| neither flow stabilizer. |

Flange dimensions

DN (MM)	PN	OUTSIDE DIAMETER (MM)	BOLTS CIRCLE DIAMETER (MM)	$\begin{gathered} \text { № } \\ \text { BOLTS } \end{gathered}$	BOLTS DRILL DIAMETER (MM)	
50	PN1O/16	165	125	4	18	
65	PN10/16	185	145	4	18	
80	PN10/16	200	160	8	18	
100	PN10/16	220	180	8	18	
125	PN10/16	250	210	8	18	
150	PN10/16	285	240	8	22	
200	PN10	340	295	8	22	
200	PN16	340	295	12	22	
250	PN16	405	355	12	26	
300	PN16	460	410	12	26	

* Para bridas ANSI consultar.

FAQ

1- Has the turbine broken?

The rupture of the turbine may be caused by the presence of solid particles of considerable size, for example, blocks and stones which may be suspended in the water.
In this case you must replace the counter mechanism and place a filter before the counter so it does not happen again.

2- The water meter does not add up?

It is likely that it is stuck, has some internal part damaged or has suffered wear and tear due to aging. When an aging wear occurs, the meter may add up to m^{3}, but not the actual ones.
In this case, the damaged element must be replaced. Our counters thanks to its hydrodynamic design with independent mechanism makes this type of repairs very simple.
Tip: have complete mechanisms to replace the faulty meter while it is being repaired

0

WHEN WATER COUNTS

CUANDO EL AGUA ES LO QUE CUENTA

www.hidroconta.com

Ctra. Sta Catalina, 60
Murcia (30012)
España
> T: +34 968267788 > F: +34 968341149

