Pump characteristic
Gear pump is a rotary positive displacement pump with positive preasure characteristic. The capacty of the purip yaties directly with speed but remain constant between the casing \& impelier some liquid always bypasses to suction causing sleep, which depenas upon the difterential pressure, viscosity of the liquid 8 of course the workman-ship. The pumps are cappabie of handiling any viscosity, the sleep reduced wilh viscosity but the viscossy power increases. The pump has a sellcavitations depersing upon the viscosity of the liguid to be pumpeds the pump speed. INTERNAL POWER LOSSES
The internal power losses in cotary pumpl are of two types. The mechanical losses is the power necessary to overcome trictional drag of al the mowng part within the pump While viscous lasses is power required to
overcome thid viscous drag \& shearing action of the fluid, this can be computed from the graph on the opposite side.

h.P. CALCULATION

The break horse power required to drive a rotary pump is sum of the theoretical HP \& intomal losses. The theoretcical horse poweris the actual work dorne in moving
me tluid trom intet pert to out tet presure congiton 8 is Whe tluid trom indet port to out let pressure conaition $\&$ is
product of constant $\mathrm{c}=0.037$, Capacty in cub. Muthr. \& Pressure Kp 'Sq. Cm Or Constant $\mathrm{C}=2.39$, Capacity in us G.P.M. © Pressure in PSI

PUMP SELECTION\& USES
The bush bearing lype of pump can be used tor clean viscous liquid having sutlicient lubricating value such as Clean lube oil, Vegetable oll, Fith a Animal oil, Gear ol, Glycerine. Hydraulc oil for intermittent duty- However for
continues duly pump with needle roller bearing in FTRN series should be selected. For liquid having tow viscosity, poor lubricating values of containing dirts of impurties such as Crude oil, Dirty litue oll. HSD, Kerosene, LDO. Paints, Sugar solufion, Turpentine, Varnish, Wood Puip. Pump with independenty lubricated should be selected.
For liguid which tends to solially at room tempetature such as Asphall, Bitumen, Furnace oil. Tar, Celluiose, Starch, LSHS, HPS, Molasses, Naphuha. Phenol resin, MFO. Silicate, Saap solution, Viscous, Wax etc. Jacketing construction should be selected to facilitate the heating or pump by steam or thermic fluid
INSPECTION \& TESTING:
All pumps are individualty lested tor its pertomance as per IIS E-8312-1976.

Distributars

Fluid Tech Systems Ahnotabad 362430 (G4i) india
"Let Our

Motary Cour Pumps

Proven Perlormance \＆operation ano ale prime consideralion whe evaluating your pumping eqirement．When it comes th in＇notofluid pump is an obvious choice tor the wery reasons．
＇ROTOFLUID＇rotary gear，twin gear \＆screw－gear pumps are wetiknown， industries tor it＇s etticient performance，operational rellability operation These pumps have outclassed corventional gear pump $\&$ has also broken myth about screw pump oftering better overall reduced cost Many imported gear \＆ screw pumps are replaced with RoTorluid pumps in power station，steel plants，retineries．oll ships．
＇FTRN＇sentes twin gear purmp now ofters enlarged capacity range with blated sion independenty Sintirn all than it symblonous apeed pele prime mover to further reduce the overall cost of the pump set．
It will be a wise decision to go for ＇ROTOFLUID＇rolary twin gear pump existing pump at your present installation．
PARTS LIST WITH
Material of Construction

SR．	ITEM	वT	material	SA．	ITEM	OT	MATERIAL
01	Pump casing	1	cicsiss	12	A．V PISTON	1	EN－E／SS
02	FRONT COVER	1	cicsiss	13	A．v．SPPing	1	SPA．ST
43	Back Cover	1	clicsiss	14	A．V．ad SCRE	1	En－uSS
04	GLAND CONEA	\dagger	cicsiss	15	base plate	1	M． 5
05.	ROTARY SHAFT	1	Ekgoterss	16	COUP．gUARD	1	ALLUME．
06	STATOR SHAFT	1	ERgitiss	17	COUPLING	1	flexiele
10	IMPELLER GEAA	1	EN－24－ISS	18	coup．key	1	－4ss
at	needle bris．	4	ппАлКо	19	SEALING SVS	d	OSMSIGP
do	WEAP PLATE	4	Bronze	20	DOWEL PIN	4	SHUST
10	LIFTING HOOK	4	Steel．	21	comp Flange	2	MS／ss
11	R．V HOUSİNG	1	MALIPCN	22	HTHEX－BOLT	12	EN－4SS

DIEMENSIONS																					WEIGHT PUMP EP－COUNKG．
OVERALL						mounting										SHAFT			Flange		
A1	$\begin{aligned} & J \\ & A \end{aligned}$	$J 1$	41	$k 1$	F1	$\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{s} \\ & s 1 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~F} \end{aligned}$	$\begin{gathered} H \\ 1 \end{gathered}$	Hi	$\begin{gathered} \mathrm{TI} \\ \mathrm{~T} \end{gathered}$	E1	c1	B1	11	$\begin{aligned} & \text { D } \\ & \text { R1 } \end{aligned}$	$\begin{aligned} & K \\ & \mathbf{L} \end{aligned}$	$\begin{aligned} & p \\ & Q \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{G} \\ & \mathrm{~A} \end{aligned}$	
503	122	262	500	145	125	80		91	80	188	75	37	340	112	147	11.5	22	4	16	89	11.5
538		283	S25	170	130					163	．	35	365	125	152						a，00
538	239	283	\＄2s	170	130	100	15	150	69	163	10	36	356	125	152	4	30	13	60	4	12．00
570	136	289	600	145	139	90	10	100	90	168	75	28	380	120	152	15.	25	15	16	108	12.2
570		284	600	145	139	－	．		．	168	．	26	350	120	152	，	－			－	14,0
420	271	315	tso	130	146	110	15	160	74	175	10.	26	410	140	159	4	30	17	79	4	13.1
667	160	320	625	165	${ }^{165}$	108	10	119	100	180	75	30	375	130	160	21	25	E	16	127	14.0
697	－	329	750	205	163					178	．	30	500	170	158	＋	－			．	220
742	318	353	750	230	175	130	15	180	40	150	12	23	500	190	170	4	40	23.5	曻	4	13.0
736	174	340	775	210	177	110	12	133	112	190	75	50	S25	170	168	24	39	8	19	152	17.5
783		363	100	230	177		．		，	190	－	55	850	190	168	－	．		．	－	3 zan
453	369	398	B50	256	197	150	15	200	90	210	14	50	600	216	188	4	50	27	121	4	20.8
842	200	377	800	240	203	130	15	163	122	214	75	35	850	205	${ }^{184}$	27	40	8	19	178	18.5
913	－	394	900	235	209	－	－		．	210	－	39	ESO	218	184	．	－		．	－	dato
953	419	399	950	255	203	180	15	220	106	210	15	50	700	216	194	4	55	30	140	4	22.5
1015	240	451	1050	$2{ }^{29}$	243	160	18	168	165	263	100	${ }^{3}$	750	240	234	32	49	10	19	190	22.0
1113		528	1100	304	243		－		－	263	．	75	800	254	234	．	－		\because	－	59.00
1113	431	528	1100	304	243	220	19	240	131	263	隹	75	800	254	234	4	60	35	168	4	33.0
1186	274	548	1200	315	277	180	18	189	180	283	100	58	800	265	248	37	54	10	19	229	40.0
1231		544	1250	310	277	．	．		．	283	．	58	900	254	248	－	－	．	．	．	azo
1296	564	ses	1300	330	277	270	19	280	145	2 ES	25	90	900	279	24 e	4	65	40	190	8	47.2
1292	225	609	1350	300	306	200	19	215	200	333	${ }^{125}$	${ }^{55}$	950	25.4	298	47	60	14	2	284	58.0
1357		313	1400	355	296	．	．		．	328	－	125	1000	300	288	＋	－	－	－	．	150.0
1447	615	673	1400	350	296	290	22	300	160	3288	25	116	1000	318	2 2ie	4	㫙	50.5	216	8	50.5
1432	343	843	1500	305	351	220	20	215	225	358	1150	183	1100	245	311	52	80	16	22	279	50.5
1600		728	1650	420	346	．	－	－	－	353	－	137	1150	354	306	．	\because	－	．	－	17550
1608	aso	728	1650	420	346	350	22	340	178	353	25	137	1180	356	306	4	95	56	241	8	76.0
1667	367	778	1650	430	350	390	22	230	250	403	153	136	1150	356	353	57	${ }^{81}$	16	22	279	77.7
1982		日53	1800	480	406		．	－	．	433	－	126	1350	457	343	．	＊	．	．	－	880.0
1882	349	自3	18：	830	390	240	22	360	200	4 4，	23	124	1350	457	3as	4	100	69	241	8	87.00

